What’s the Advantages of Different Curing Lights

Without question, light-curing is desirable, but practitioners are confused about the most appropriate light-curing concept to use in their practices. Because of this confusion, some practitioners have continued to use older lights in spite of the advantages offered by some of the newer ones. The light-emitting diode, or LED, concept is challenging more established modes of curing, and some dentists are buying LED lights. And many practitioners who have purchased the even faster plasma arc curing, or PAC, lights are not willing to go back to the slower LED light-curing method.

Since the late 1970s, halogen lights (such as the Optilux 500, Kerr, a Division of Sybron Dental Specialties, Orange, Calif.) have been in constant use in dentistry. They have served the profession well, they are a known entity and they are easy-to-use, relatively reliable devices.

The advantages of conventional halogen curing lights:

– Some cost less than other light systems.
– They are based on a simple technology.
– They generate little or no heat.
– Their technology is well-known and nonthreatening.

In the last few years, there has been an emphasis on enhanced conventional curing lights to provide greater curing intensity and faster cure. The most obvious way this has been accomplished is by the use of light guides that diminish in size as they exit from the curing light. The Turbo Tip (Kerr) exemplifies this concept. Numerous enhanced halogen curing lights (such as the Optilux 501, Kerr) are on the market, and they have been popular choices for practitioners.

The advantages of  enhanced halogen lights:

– They offer a faster resin cure.
– They operate via a known, proven technology.

Recently, a new concept to dentistry, the LED, has entered the market. There have been significant sales promotions from the several companies selling LED lights. As a result of the promotions, dentists appear to be more confused than before.

The advantages of LED curing light:

– LED lights are cordless, small and lightweight.
– Diodes are long-lasting without the need for frequent replacement.
– They generate no heat during curing.
– They offer a moderate curing time of about 10 to 20 seconds.
– They are quiet in operation.

Some practitioners have reported that the rapid cure afforded by PAC lights causes damage to both resin-based composite restorations and the tooth preparations. Although this subject has been debated for several years, current clinical usage, as well as research, have disproved the allegations of damage caused by the faster lights.

The advantages of PAC Lights:

– Curing time averages three seconds for a typical shade A2 resin-based composite restoration.
– The time savings observed with PAC lights amounts to a significant sum of money over a year’s use.
– Short curing time makes overall procedures shorter and more Dental Products,Dental Supplies integrated.

FOr more information, please visit: https://www.oyodental.com/best-Dental-Micro-Motor-for-sale.html

 

The Four Points You Should Know When Choosing Dental Equipment Supplier

Do you want to buy the best quality dental equipment? if yes, then you should know the importance of choosing a good dental equipment supplier. Choosing the ideal dental equipment supplier is essential for getting quality products at affordable prices. You must consider the four points when choosing a dental equipment supplier:

1. Purchasing Convenience

If you’re looking for a dental equipment supply company, find one that offers convenient purchasing options. Do you like to shop online for the equipment that you’re looking for? Online shopping can make the experience convenient as long as there are payment options available to fit your needs. Catalogs are also ideal, but they don’t always list the most up to date information about the available products. Consider the way you like to shop and if the supply company offers that option for you before you make your final decision.

2. Quality is the first priority

Not surprisingly, dentists invest in the best quality dental instruments as it determines the quality of patient care. Dentists choose the best teeth whitening lamp, sterilizers, dental air compressor, amalgamators, drills, dental suction unit and other tools they need.

Prior to the purchase, a lot of research goes into finding the right supplier to compare costs, support and service and select the ones that suit their needs. These days, much of this research can be accomplished via the internet. Although it is easy to get brochures describing the various instruments, Dentists prefer to check the dental instruments personally before they decide to purchase them.

3. Knowledge and Expertise

One of the most important things you’ll want to consider when choosing a supplier is the knowledge and expertise of the staff. When you call them, can they answer all of your questions about the products they offer? Do they instill a sense of confidence in you by being experts about the products they sell? The workers should be knowledgeable about their products so you call anytime and get answers to any of the questions you have.

4. Inventory

When choosing a dental equipment supplier, you want to choose one that has the products that they offer in their inventory. When you call for a particular piece of equipment, it can be frustrating if they don’t have it in their inventory when you need it. It can be even more frustrating if that happens all the time. Ask your potential dental equipment suppliers if they have all of their items in stock most of the time or if they have to get them from somewhere else. If they have to go somewhere else to get the supplies, you should choose a different supplier.

 

What’s the Basis for Successful Endodontic Treatment

Root canal shaping is one of the most important steps in canal treatment. It is essential to determine the efficacy of all subsequent procedures, including chemical disinfection and root canal obturation are the basis for successful endodontic endo motor treatment, aiming to debride the root canal, to remove contaminated dentin, and to create an ideal canal shape for three-dimensional filling .

The main objective of a clinician is to mechanically and chemically cleanse the root canal system thoroughly, making it free of microorganisms and their substrates.

The root with a graceful tapering canal and a single apical foramen has long been established as an exception rather than the rule. Bifurcating canals, multiple foramina, fins, deltas, loops, cul-de-sacs, intercanal links, C-shaped canals, and accessory canals have most commonly been faced by the investigators in most teeth .

The instrumentation of the apical matrix to a large size leads to more anatomical irregularities and increases irrigant exchange in the apical third. Apical enlargement during canal cleaning and shaping procedures increases the likelihood of achieving maximum elimination of bacteria from root canal system , though a major part of the canal remains uncleaned even after thorough cleaning and shaping .

Until recently, most investigations have involved counting the number of canals and foramina and categorizing how the canals join or split. Majority of studies have tried to evaluate the shape of the canal systems( root canal treatment equipment ) and its clinical implications than to evaluate the actual preoperative size of the canal .

However, it is recommended not to widen the root canal to a larger extent to avoid unnecessary weakening of the root and increased risk of fracture. Regarding modern concepts, the final canal allows adequate irrigation and close adaptation of the filling material during obturation . Working width (WW) is relatively new concept, which involves perceiving a root canal in both perpendicular (working length) and horizontal (WW) dimensions. Thus, endodontic ―working width‖ has always remained unforgotten dimension during root canal procedure without solid scientific evidence; however, it is still not clear ―how large is enough.

What’s the Diagnosis of Endodontics Depends On

November 4, 2016 (Newswire) –Diagnosis, treatment planning and clinical outcome assessment in endodontics depend to a large extent on radiographic examinations. Conventional periapical radiographs, either captured on conventional x-ray film( dental x ray machine portable ) or digital are used for the management of endodontic problems provide limited information because of the combination of their two dimensional nature, geometric distortion, anatomical noise, and temporal perspective.

Useful information such as the presence, location and extent of periradicular lesions, the anatomy of root-canals( root canal treatment equipment ) and the proximity of adjacent anatomical structures provided by periapical radiographs are exposed during endodontic treatment procedures . Inspite of widespread use periapical images, either captured on x-ray film or digital sensors, provide limited information .

The most important limitation of periapical radiographs is that they do not always accurately reflect the anatomy being assessed because of the complexity of the maxillofacial skeleton . In endodontic practice, radiographs are recorded using the paralleling technique / long-cone or right-angle technique, instead of the bisecting angle technique, as it produces more geometrically accurate images.

For accurate reproduction of anatomy in the paralleling technique, the radiographic film or RVG sensor should be placed parallel to the long axis of the tooth, and the x-ray beam should be directed perpendicular both to the image receptor and the tooth being assessed. The lack of long-axis orientation results in geometric distortion of the radiographic image.

Another important principle in endodontic radiology is to display the structures of diagnostic interest onto a background as homogeneous as possible . However, the anatomical structures surrounding the tooth may superimpose and cause difficulty in interpreting periapical radiographs.Various studies have demonstrated the difficulty of radiographically visualizing the periapical lesions confined to the cancellous bone, as the denser overlying cortical plate masks the area of interest.

Anatomical noise also accounts for some underestimation of the size of periapical lesion on radiographic images .Anatomical noise is dependent on several factors such as non-optimal irradiation geometry, overlying anatomy,the thickness of the cancellous bone and cortical plate, and the relationship of the root apices to the cortical plate.

For more information, please visit: https://www.oyodental.com/best-Endodontic-Motor-Endo-for-sale.html

 

A Brief Introduction of the Generation of Dental Apex Locator

The development of the electronic apex locator (EAL) has helped make the assessment of

working length more accurate and predictable, particularly useful when the apical portion of

the canal system is obscured by certain anatomic structures:Impacted teeth, tori ,zygomatic

arch, excessive bone density, overlapping roots and shallow palatal vault.
The objective of working length determination is to establish the length (distance from the

apex) at which canal preparation and subsequent obturation are to be terminated. Methods

for determining working length are radiographs , electronic apex locators, tactile sense,

mathematics method, apical periodontal sensitivity, paper points, microscopic magnification

and average tooth length.

 

Root canals are surrounded by dentine and cementum that are insulators to electric current.

At the apical foramen there is a small hole in which conductive materials within the canal are

electrically connected to the periodontal ligament that is a conductor of electric current. The

resistive material of the canal (dentine, tissue, fluid) with a particular resistivity forms a

resistor, the value of which depends on the length, cross-sectional area and the resistivity of

the materials .

 

The first generation: Resistance between the periodontium and the oral mucous membrane in humans was

constant at 6.5 K Ohm, regardless of the age of the patients or the shape and type of teeth.

Contents of the canal (vital pulp tester vs. necrotic pulp) also had no effect upon the resistance.

First-generation apex location devices measure the opposition to the flow of direct current

or resistance. The resistance was measured between the two electrodes to determine

location within a canal. Pain was often felt with this type of apex locator.
Second-generation apex locatorsmeasure the opposition to the flow of alternating current or

impedance.This generation contains 2 types of apex locator: low frequency and high

frequency apex locator. Low frequency AL is based on the assumption that the impedance

between the oral mucous membrane and the depth of the gingival sulcus closely resembles

the impedance between the canal terminus and the oral mucous membrane.

 

The 3rd generation apex locator has been called “frequency dependent” apex locators. This

type was supplied by 2 frequencies to measure the impedance in the canal. There are 2

types of the 3rd generation ALs: impedance difference type and impedance ratio type.

Impedance difference AL measures the impedance value at two different frequencies and

calculates the difference between the two values (Yamashita, 1990) while impedance ratio

type measured the position of the file from the ratio between these two impedances.

 

Of course, there are some other information can not introduce in detail. Please visit: http://www.oyodental.com

The Benefits of Piezo-electric Scaler

The piezo-electric scaler is a staple in our hygiene rooms. Hygienists in our office rave about our new piezo-electric scalers and, more importantly, patients are very complimentary about how their mouths feel after their maintenance visits. If you have the desire to move into the world of electric scalers, or are ready to upgrade, give considerable thought to the purchase of a piezo-electric scaler. This technology will stand the test of time. It is the ultimate in dental ultrasonic scalers.

Piezo-electric scalers in particular have some distinct advantages over many other conventional ultrasonic units. In addition to the previously mentioned benefits of ultrasonics in general, piezo-electric technology offers the following:

(1) versatile ultrasonic units have numerous clinical applications due to a comprehensive range of accessories; in addition to inserts for use in scaling and debridement, many other inserts are available for procedures such as periodontics, apical surgery, and prosthodontics; dozens of various inserts are offered that all fit on the same handpiece.

(2) less water is necessary during the procedure, adding to patient comfort and operator convenience; less need for management of excessive water accumulation; less water is required because the unit’s efficiency is greater than 90%—there is no delivered energy or mechanical friction, hence, little secondary temperature rise; since there is very little temperature rise, the handpiece can be used without water.

(3) LED curing light is available with some units—much more convenient to assemble and operate than conventional curing lights, saving time, money, and space; the light simply attaches to the unit in place of the piezo-electric handpiece; perfect for sealant curing in the hygiene room as well as for restorative materials.

(4) easy, convenient barrier protection—intraoral camera sheaths intimately fit many piezo-electric handpieces; barrier protection for the unit itself is provided by simply placing a sheet of plastic wrap loosely over the entire unit; with this in place, the operator can adjust the water and power setting and place the dental handpiece in its holder without contaminating the unit, which minimizes the use of surface disinfectant, which would add time following the procedure and risk damaging the unit.

(5) the use of state-of-the-art technology helps to strengthen patient relations; communicating with patients and educating them about the advantages of the piezo-electric scaler is a practice builder; patients feel more comfortable throughout the procedure and confident that they are receiving the best possible care.

Clinical Tips on Dental Curing Light

Dental curing lights, and the science behind them, have seen amazing growth and changes in the last few years. Here’s a look at some of the amazing things that have happened and why you should be aware of them.

The need for a reliable and effective curing light has grown as resin composites and light-cured materials such as sealants and adhesives have grown in popularity. Today the dental curing light is a key part of any dental practice’s armamentarium.

There are many options to consider when selecting the right curing light for your dental practice, but the focus of your search should be to find a light compatible with your preferred restorative materials. A light that operates at a variety of wavelengths will cure the largest number of materials, but it remains important to inquire if the light you want to purchase will work with the photoinitiators in the materials you use. Beyond the actual light the unit produces you also will want to decide if a cordless model is a good fit for you practice.

Another consideration is the body style of the light with pistol grip and wand styles the most common options. The light you choose should be comfortable in your hands and easy for you to maneuver so you can cure restorations throughout your patients’ mouths. A final consideration should be the construction of the light and the warranty backing its performance. You want to be sure your light will work whenever you need it.

Minimize heat by having the assistant direct a stream of air or a high-volume vacuum over the tooth crown during light curing. Placing a wet cotton roll directly on the tooth crown opposite the side of exposure will also lessen temperature rise, but not to the same extent as using air.

Minimize direct exposure to light sources using effective “blue-blocking” eyeglasses or shields for the clinician and patient.

Determine the loss of beam intensity with distance by holding the light guide at different distances from a dental curing radiometer. Curing potential of a restorative material depends on total energy received. Determine power at tip end, and multiply that by the recommended exposure duration — the product is the light energy intensity delivered. When moving the tip away, measure that power level and divide it into the light energy intensity calculated above. The result will be the exposure duration needed to account for power loss with increasing distance.

For more information, please visit: https://www.oyodental.com/best-Dental-Portable-Unit-for-sale.html

Brief Historical Background of Controlled Memory Technology

Optimal cleaning and shaping of root canal systems requires, among many things, the coincident integration and tangible application of numerous anatomical, clinical, and technique driven considerations. For example, the case must be diagnosed correctly; the clinical risk assessed; the technique, clinical supplies, and instruments selected; and all of the above used correctly and simultaneously to achieve the treatment objectives.

The first generation of Ni-Ti was ground from Ni-Ti file blanks and not heat-treated. Such first-generation instruments are superelastic. Superelasticity denotes the ability of the file to deform (strain) from its original shape under a physical load (stress). Clinically, this is manifest as a Ni-Ti file rotating in a curved canal and returning to its original shape upon removal from the root canal treatment equipment.

In essence, the Ni-Ti undergoes a transformation (the instrument is “strained”) from its harder austenite crystalline phase configuration to its softer martensitic crystalline phase configuration while under such “stress.” When the stress is relieved, it returns to its original shape (austenite). Such behavior is termed “shape memory.” First-generation (nonheat-treated) Ni-Ti instruments can generally accommodate approximately an 8% strain before fracture. In contrast, CM instruments do not possess superelasticity and do not undergo the aforementioned transformation.

The second generation of Ni-Ti files is heat-treated, either in the bulk raw material stage before grinding or, alternatively, after grinding. CM instruments are a subset of this second generation of heat-treated instruments. CM technology was introduced in 2010. Heat treatment processes are proprietary.

Interestingly, there is a new file that is heat-treated only in the apical 10 mm of its cutting flutes, providing flexibility at its working end. To the author’s knowledge, for all other current systems, heat treatment encompasses the entire instrument.

CM files are unique among the commercial products available at this time. While made of heat-treated Ni-Ti, they remain curved as they rotate around a curved canal. CM files do not regain their original shape after use. Hence, they have “controlled memory.” The literature suggests this CM feature reduces transportation and conserves tooth structure. The literature also states that CM files are 300% to 900% more resistant to cyclic fatigue and have a statistically significant greater flexibility than their first generation superelastic counterparts. Aside from flexibility, CM files have essentially equivalent torsional strength to nonheat-treated files.

In the existing scientific literature published to date, there are no unfavorable reported findings on CM attributes. The current literature file on CM technology is available by email from the author on request.

See more, please visit: https://www.oyodental.com/

Básicamente podríamos dividir a las lámparas de fotocurado en

Lámparas halógenas – Luz incandescente –  convencionales: 360 a 500 nm.Y de alta potencia: superior a 500 nm.:Son lámparas de cuarzo de tungsteno, en este tipo de lámparas la luz es emitida por un filamento generando una luz blanca que pasa a través de un filtro transformando la luz en una luz azul capaz de activar las canforoquinonas de los equipos odontologicos. De este proceso se genera la liberación de calor producto del 95% de la luz que son rayos infrarrojos, es por esto que traen incorporado a su estructura un ventilador mecánico para disipar el calor.  Para la mayoría de los composites o resinas compuestas su fotoactivador es la canforoquinona cuyo pico de excitación ronda lo 460nm. Por lo que estas lámparas trabajan los composites sin problemas.

Lámparas de arco de plasma – Luz de arco o xenón – 460 a 480 nm.:
El plasma es básicamente materia gaseosa altamente ionizada. La luz se genera mediante una descarga eléctrica en forma de arco voltaico entre dos electrodos de tungsteno, el gas xenón que se encuentra en este arco evitará la evaporación de los electrodos y tras este proceso no se produce liberación de calor lo cual es una de sus ventajas. La intensidad de la luz puede ser el doble o el triple de la luz halógena convencional, sin embargo, debido a esta potencia la contracción que se generan en las resinas compuestas o composites es también mayor por lo que no han tenido tan buenos resultados clínicos.

Lámparas de polimerización laser – Luz de argón o de diodos – 488 a 904 nm. L: Light A: Amplification S: Stimulated E: Emision R: Radiation:
Su característica principal es el tipo de fotón producido, permanece constante en la misma frecuencia generando una mayor potencia y áreas más concentradas y más pequeñas, entre sus ventajas destaja la baja producción de rayos infrarrojos traducido en menor calor. Su efecto sobre la polimerización correcta de los composites es hoy en día cuestionable ya que su potencia se encuentra por encima del pico de excitación de las canforoquinonas.

Lámparas de fotocurado LED. – Luz emisión de diodos – 450 a 480 nm. – L: Light E: Emitting D: Diode:
La luz en estos casos es emitida a través de un diodo que no es más que un semiconductor que facilita el paso de luz en un sentido, desde el ánodo hasta el cátodo y lo dificulta en sentido contrario. Dentro de sus ventajas se encuentra que no requieren ningún tipo de sistema de refrigeración en su estructura debido a que no liberan calor en la producción de la luz, haciéndolas también más silenciosas.

How Root Canal Treatment Exactly Carried Out

The procedure of root canal treatment involves removing the internal parts of the tooth chamber and then filling the empty cavity with a suitable compatible material. It is a painless procedure that is usually completed within 4 sittings but may extend to 7-8 depending on the doctor and the extent of damage. We will describe the root canal treatment and how it is exactly carried out by root canal treatment equipment in detail.

The dentist first diagnoses the patient and advices him to go for treatment in case his root canal has gotten destroyed. The tooth area is then separated from the other regions with the help of a rubber dam kit. This ensures that the probability of mixing of fluids from the motor and saliva doesn’t take place. Thereafter the dentist would drill in a cavity in the tooth with the help of an aerator and thereafter root canal files are used to entirely clean the root. These files also help in removing the pulp of the tooth.

Subsequently the dentist will temporarily fill the cavity with a filling material and also place in a soothing medicine so as to prevent any kind of infection.

Over a period of sittings, the dentist observes if the root canal’s health has improved and once convinced the temporary fillings are removed and the pulp chamber and the root canal is permanently filled. A tapered, rubbery material called as gutta percha is inserted into each of the canals and more often than not the procedure is completed with the opening being sealed with cement. The last stage involves crowning the tooth so as to restore its natural shape and appearance. The crown will help to restore the tooth’s strength and protect it from cracking. The crown needs to be placed soon after having root canal treatment.

Nonliving (non-vitaltherapy) tooth:With this treatment method dentist will provide general sedation to numb the unpleasant teeth.In non-vital pulp therapy, your pulp is removed through the top of the teeth and also from the root. Dentist will probably clean up the canal and also seal using long-lasting barrier materials just like a rubber kind material or dental lab equipment  known as ‘gutta percha’. Then a stainless-steel cover is placed over the teeth.